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Nanoparticles

Morteza Mahmoudi'?’, Sophie Laurent’ and W. Shane Jﬂurneay4’5

‘National Cell Bank, Pasteur Institute of Ilran, Tehran, I[ran; “Institute Jor Nanoscience and
Nanotechnology, Sharif University of Technology, Tehran, lran; jfﬁﬁj?ur'fr:sznr of General, Organic, and
Biomedical Chemistry, NMR and Molecular [maging Laboratory, University of Mons, Belgium;
Nanotechnology Toxicology Consulting and Training, Inc, Nova Scotia, Canada and ° Faculty of
Medicine, Dalhousie Medical School, Dalhousie University, [lalifax, Nova Scotia, Canada

Abstract: Due to the hopelul potential of nanoparticles in medicine. they have altracted much attention
{or various applications such as targeted drug/gene delivery, separation or imaging. Interaction of NPs
with the biological environment can lead to a wide range ol cellular responses. In order 1o have sale
NPs lor bromedical applications. the current biocompatibility researches are particularly focused on the
severe toxie mechanmisms which cause cells death. These mechamsms are apoptosis. autlophagy and
necrosis, which can also be intricately hinked with the cell-life evele, as there are various check-points
and controls 1n a cell’s hie cyele to ensure appropriate division processes. Mechanisms by which
toxicants induce cell death by necrosis and apoplosis have been the locus of many biomedical
disciplines because 11 helps us understand toxicity but also provides opportunities for drugs to impact on
dyvsregulation ol the cell cyele in diseases such as cancer. Among various types ol NPs. the
superparamagnetic iron oxide nanoparticles (SPION) are recognized as powerlul biocompatible
materials [or multi-task nanomedieine applications such as drug deliverv. magnetic resonance imaging.
cell/protein separation. hvperthermia and transfection. This chapler presents overview ol the effect of
SPION on the eell life cycle.

Kevwords: Superparamagnetic 1wron  oxide nanoparticles, Cell coycele, TUNIEL  assay, Protem
absorption, Polyethylene glveol fumarate, Polyvinvl alcohol, Propidium 1odide, Phosphate buffer saline,
Fetal bovine serum, MTT assay., Derivative study

CELL LIFE CYCLE

The cell hife cycle corresponds to a series of events which lead the cell to its division. duphication, and death
| 1-3]. Cell-life phases are divided into three main parts including (. S, and G-, In the first gap phase (G;).
the cell grows and produces enzymes that are necessary for cell division. In the synthesis phase (S), the
DNA 1s replicated. In the second gap phase ((,), the cell continues to grow and the cell 1s carrying out
processes necessary for mitosis (M), In both the G, and G, phases, there are checkpoints that ensure
appropriate criterita are met for cycle progression. The effect of NPs on cells depends on their
physiochemical properties such as size and distribution, shape. and charge |6 One adverse effect of certain
NPs 1s the mduction of oxidative stress in treated-cells, causing the potential for DNA damage as an early
effect evidenced m cell cycle progression. DNA damage 15 divided mto reversible and nrreversible types.
Considering the cells with reversibly damaged DNA, the cells will accumulate in the G, or S, and in the
Go/M phases |7]. Cells which carry irreversibly damaged DNA will proceed to apoptosis, giving rise to the
formation ol [ragmented DNA that can be identilied m the subG, phase |8

The cell cyele 1s a vital process for removal of the damaged cells (via apoplosis) and the disruption of this
regulated process can induce the formation of tumors. More specifically, some genes like the cell cycele
mmhibitors (e.g., RB. p53) when they mutate, can cause the cell to multiply uncontrollably. forming a tumor.

Although the duration of cell cycle in tumor cells 1s equal to or longer than that of normal cell cyele, the
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proportion of cells that are in active cell division (versus quiescent cells in Gy phase) in tumors i1s much
higher than that in healthy tissue. Thus there 1s a net inerease in cell number as the number of cells that die
by apoplosis or senescence remains the same. The cells which are actively undergoing cell cyele transition
are largeted mn cancer therapy as the DNA 1s relatively exposed during cell division and hence susceptible
to damage by drugs or radiation. This physiology is exploited in cancer treatment by a process known as
debulking. whereby a significant mass of the tumor 1s removed which pushes a number of the remaining
tumor cells from Gy to Gy phase.

SPION

SPION are classified as morganic-based NPs having an 1ron oxade core coated by both norganic and
organic matenals. There are two types ol won oxides including magnetite (FesO,) and maghemite (y-
['e103). however the magnetite has attracted scientists due to its greater biocompatibility in comparison to
maghemite |9, 10]. The lavorable morganic coatings are limited to silica and gold. however there arc wide
range of organic coatings such as polymers (e.g., polvethvlene glveol, polvethvlene glveol [umarale
(PEGF), and polyvinyl alecohol), acrylates, phospholipids. fatty acids, polysaccharides, and peptides [11]. In
comparison with other NPs, SPION have the capability to target a desired site or to heat in the presence of
an externally applied AC magnetic field, due to their inducible magnetization. More specifically, SPION
have been recognized as a very promising kind of NPs not only due to their very good biocompatibility |11-
[ 7]. but also due to thewr diversity of potential applications which can sigmificantly merease patient
comphiance | 18-20].

The SPION have been extensively employed for both in vitro and in vive biomedical applications such as
magnetic resonance 1maging (MRI) contrast enhancement [21. 22|, tissue specilic release ol therapeutic
agents |23 ], hyperthermia, transfection. cell/biomolecules separation, and targeted drug delivery |24]. Many
SPION such as Ienidex, Endorem or Combidex are commercial and have the FDA approval lor MR
imaging |25, 26|. The current approaches in SPION are focused on their usage in ‘theragnositc’ (i.e.,
therapeutic and diagnostic) applications.

EFFECT OF SPION ON CELL LIFE CYCLE
The elfects of different SPION on the cell-life cycle of various cells are summarized in Table 1.

Preliminary SPION formulations have shown to induce both reversible and nreversible DNA damage. For
example, the toxic effects of bare SPION, with both magnetite and maghemite structures. on the A349

Table 1: Effeet of SPION on the cell-life assav,

Coating Size Cell Type . Exposure Phase Phase ' Remark Refs.
. Arrest 2
(nm) Conc. Time Arres | l:lh;m
ce
(h)

Polyvinyl | 48 Mouse tissue S80mM | 72 Nong G./M Surface passivated 171
alcohol connective nanoparticles were used.
None 4.5 Mouse tissue S80mM | 72 None Sub Gy, Surface passivated [7]

conneciive and G,/M | nanoparticles were used.
Polyvinyl | 12 Mouse tissue 200- 72 None None Surlace Active nanoparticles [13]
alcohol connective 400 were used.

mhl

Mone 4 Mouse tiszue 200- T2 Crpliy Sub G,y Surface Active nanoparticles [12, 13]

conneclive 400 were used.

mM

Carboxy- | 45-60 | human 300 1 None S and SPION-promoted cell growth [35]
dextran mesenchyv-mal | pe/ml Gy/M is due to itz abihity to diminish

stem cells intracellular [,0; through

itrinsic peroxidase-hke
aclivity.
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human lung epithelial cell line were probed. The abilities of these magnetic nanoparticles to cause DNA
damage and oxidative lesions have been evaluated using the comet assay [27]. The intracellular production
ol reactive oxyvgen species (ROS) was also measured by the oxidation sensitive [luoroprobe 2'.7'-
dichlorolluorescin diacelate and the observed toxicity ranged [rom none to low. Neither DNA damage nor
intracellular ROS toxic effects in human lung cells were seen [rom interaction with magnetite nanoparticles
at concentrations of 20-40 pg/mlL. However, low quantities of oxidative DNA lesions were observed. There
are several methods to track the effects of the DNA damage on the cell-life cycle phases such as the
TUNEL (terminal deoxvnucleotidyl transferase-mediated dUTP nick end-labeling) assavs, which will be
described later in this chapter,

APOPTOSIS MEASUREMENT

The apoptosts phenomenon occurs due to the ureversible DNA damages. A ubiquitous [eature of the
apoptosts phenomenon 1s the breakup ol chromatin, which happens during the exposure ol numerous 3" O
DNA ends. By analvzing the DNA ol cells which are undergoing apoptosis, using gel electrophoresis, a
unique ladder-like appearance of DNA pieces with discrete molecular weights is observed. Hence, a
rehiable and rapid method for apoplosis evaluation is to compare the mobilitv of DNA extracted from
control and apoptotic cells. for instance comparing DNA mobility of untreated Jurkat cells to the mobility
of DNA of camptothecin-induced Jurkat cells [28. 29| To determine apoptosis due to the exposure of cells
to the SPION. there are several commercialized kits such as Apoptosis APO-BRDUTM kit (Sigma-Aldrich.
Inc.) which needs dual color [low ¢vtometry method for 1ts evaluation.

Typically, BRDUTM kit provides a simple process ol assessing apoptosis; however. the use ol this kit
requires that the cells are lysed. The appearance ol the 3" O ends can also be quantilied as a measurement
ol apoptosis in whole cells by an alternative method which does not require cell lysis. An allernative
method mm mixed cell populations 1s called the TUNIIL, assay, also known as the bromodeoxyuridine
terminal deoxynucleotidyl transferase assay. For instance. the 1.929 mouse fibroblasts connective tissue
cells were treated with both bare and polyvinyl alcohol (PVA)-coated SPION and their apoptotic effects
were tracked with the TUNEL assay [12]|. In order to prepare both control and treated-cells for flow
cvtomelry evaluations, the predetermined cells were fixed with paraformaldehyde in PBS. followed by
cthanol fixation. Consequently. the cells were washed and reacted with the TdT enzyme (terminal
deoxynucleotidy] transferase) and Br-dU'TP (bromodeoxyvuridine triphosphate) m bulfered solution at 37°C
for 60 min. In this case. bromodeoxyvuridine was covalently mcorporated into the 3' DNA ends during this
meubation. Cells should be then thoroughly rinsed and mceubated with a FITC (fTuorescein 1sothiocvanate)
labeled antibody directed to bromodeoxyuridine for about 30 mm. After washing awav unbound antibody.
immunostaining with the FITC labeled anti-bromodeoxvuridine antibody allowed to determine the number
of free 3' ends. The RNA of the cells was then digested and the total DNA stained by incubation with a
solution containing RNase A plus propidium iodide. Staming ol cells with propidium 1odide allows
normalizing FI'TC staining to the total amount of DNA 1n the cells. Finally. the stained cells were analyzed
by flow cytometry with an argon laser emitting at 488 nm. FITC [luorescence was observed at 520 nm and
propidium 1odide simultancously at 623 nm. The results shown n Fig. 1 indicated that the SPION treated-
cells did not show apoplosis at the examined SPION content up to concentrations ol 200 mM,

CELL CYCLE ASSAY

Cell cvele assay could be evaluated by staining ol the DNA with the suitable [Muorescence dyes. such as
propidium 1odide (PI), lollowed by [low cytometric measurement ol the (luorescence. Tvpically. the cells
were cultured and then treated with the NPs [or the desired time. Since the damaged cells may leave their
attached places and be suspended in medium, the medium should be stored after removal.

Then, the remaining adhesive cells could be detached from the flask via tryvpsin treatment and harvested using
the stored medium followed by centrifugation at about 280 G. The collected cells were washed thoroughly with
phosphate buffer saline (PBS) lollowed by translerring ol cells nto the tubes contaming 70% ethanol for
[ixation and stored at -20°C. Prior to the {low ¢viometric analysis. the ethanol-suspended cells were centrnifuged
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at 200¢g for about 5> min and the supernatants were decanted comprehensively. The collected cells were washed
with PI3S and then suspended in 1 ml PI/Triton X-100 staining solution with RNase A at 37°C lor 15 min or at
ambient temperature lor 30 min. The stained cells are then ready lor evaluations by [low cylometry al an
excitation wavelength of 488 nm (for PI) and emission wavelength of 610 nm.
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Figure 1: Flow cvtometry results for 1929 Cells (a) with no SPION added and (b) with SPION (iron concentration of
200 mM) added: with permission [rom reference [12].
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Figure 2: Cell eyele assay results for (a) control and (b) coated SPION (200 mM) treated cells;

reference [13]
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Figure 3: Cell evele assav results for (a) control and (b) coated SPION (400 mM) treated cells: with permission from
reference [13].
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Figure 4: Cell cvele assay results [or treated cells 1o uncoated SPION with coneentration ol (a) 200 and (b) 400 mM:
with permission from reference [13].
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In order to track the effects of both bare and PVA coated SPION on the 1.929 cells, this method has been
applied. Cell cycle assessment was carried out by stamning of the DNA with PI [ollowed by [low eytometrie
measurement  [13]. Approximately 10° 1929 cells were cultured and treated with SPION with
concentrations of 100, 200 and 400 mM of 1ron for 72 h. The effects of SPION treated cells were probed in
cach phase of the cell eyele and compared with control cells. According to the oblained results. both bare
and PVA coated SPION with the iron concentration of 100 and 200 mM have no detectable effect on the
cell life evele phases and were similar to the control cells (see Figs. 2 and 4).

The same proportion ol the cell population in subG, phase in control cells and SPION treated cells
conlirmed the absence ol apoptosis. As the concentration ol coated-SPION increased with an 1iron
concentration of 400 mM. a neghgible amount of apoptosis was observed n the assay (sce Fig 3) In
contrast, for the barc SPION treated cells, a signilicant mcrease in the proportion of apoptotic cells
(ASubG,/SubG(control) =0.62) was observed (see Fig. 4) due to the irreversible DNA damage. In addition
to apoptosis. the arrest n the Gy(Gy phase was detected for the bare SPION treated cells at an 1ron
concentration of 400 mM. Furthermore. due to the higher surface activity of the bare SPION in comparison
with the PVA coaled particles, the granularity of the bare SPION treated-cells was increased, which is
clearly shown in Fig. 4b,
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PROTEIN-SPION INTERACTIONS AND THEIR EFFECTS ON CELL CYCLE ASSAY

It 158 now well-recognized that the NPs can interact with proteins on their entrance into the biological
environment |30-34]. The outcome of these mteractions may cause the mallunction ol the crucial proteins
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that could have a significant effect on the cell life cvele. /m vitro investigations have shown that SPION can
mteraction with cell medium containing fetal bovine serum (FI3S) whereby the particles demonstrate
adsorption ol FI3S protemns to the surlace ol the SPION. More specilically. the UV/Vis spectroscopy of
both fresh cell medium and extracted medium alter interactions with bare and coated (PVA and PEGIL)
SPION confirmed not only protein absorption but also pH changes (at wavelength of 560 nm in the spectra)
of the cell culture which can cause severe errors in toxicity evaluation methods (e.g., MTT (3-(4.5-
dimethylthiazol-2-y1)-2,5-diphenvltetrazolium bromide) assav) [13, 15, 16]. Fig. § shows the effect of
uncoated and PVA-coated SPION on the cell medium, In addition to PVA, the effect of PEGE coated
SPION on the cell medium were probed and similar results were obtained (Fig. 6)
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To overcome this problem. a modified method has been proposed using the following steps: (1)
introduction of the nanoparticles to the cell medium, (2) incubation of the solution for 24 hours n order to
create a hard protein corona, (3) replacing the medium with a fresh one, and (4) application of the surface
saturated SPION to the assays [13, 15, 16]. By applying this protocol. the obtained SPION did not change
the spectra of the cell medium (see Fig. 7). resulting a more appropriate toxicity evaluations of the NPs.

In order to prove that the adsorption of several proteins to the surface of SPION occurs. the derivative
spectroscopy method was emploved [13, 15, 16]. Both [irst and second order denvatives have been probed
lor detection of multi-component changes i cell culture medium following interaction with SPION. The
results are shown i Iig. 8. Multi-proten absorbance 1s detected via the sceond derivative curves between
the wavelengths of 250-300 nm in both bare and PGl -coated SPION (I'1gs. 8a and b). I'ig. 8¢ shows the
derivative curves for the modified samples, denoting negligible absorbance at aforementioned wavelengths.
By applying this new protocol to the 1929 cell lines. the observed irreversible DNA damages are decreased
leading to the reduction of apoptosis of the cells at the same concentrations |7 |

LIST OF ABBREVIATIONS

NPs: Nanoparticles: SPION: Superparamagnetic Iron Oxade Nanoparticles. MRI: Magnetic Resonance
Imaging: ROS: Reactive Oxygen Species; TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP
nick end-labeling: PVA: PolyVinvl Aleohol. PI: Propidium Iodide; PBS: Phosphate Buller Saline; FBS:
Fetal Bovine Scerum:; PLGI: Polylithvlene Glyeol Fumarate; MTT: 3-(4.5-dimethylthiazol-2-y1)-2.5-

diphenyltetrazolium bromide
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